Ru-CATALYZED OXIDATION OF SUBSTITUTED ACETYLENES TO α -KETO ESTERS AND α -KETO AMIDES WITH IODOSYLBENZENE

Paul Müller* and José Godoy,
Département de Chimie Organique, Université de Genève,
1211 Genève 4. Switzerland

Summary. Oxidation of alkynyl ethers and -amines with iodosylbenzene in presence of Rucatalysts affords α -keto esters and α -keto amides in 44-84% yield. These conversions can also be effected with RuO₄.

Oxidations based on iodosylbenzene are of current interest in connection with model studies for peroxidases and cytochrome P-450.\(^1\) Preparative applications in catalytic and uncatalyzed systems have been reported with PhIO,\(^2\) but also PhIO $_2$.\(^3\) We have previously found that PhIO in conjunction with Ru-catalysts is an efficient reagent for conversion of alcohols to aldehydes, ketones or carboxylic acids.\(^2\alpha\) Disubstituted acetylenes are converted to \(\alpha\)-diketones in yields of 65-86%, while terminal acetylenes are cleaved to carboxylic acids.\(^4\) We have applied the combination of PhIO/Ru-catalyst to 1-alkynyl ethers and 1-alkynyl amines to obtain the corresponding \(\alpha\)-keto esters and amides in fair to excellent yield, depending on the substituents present in the substrate:

The results are summarized in Tables 1 and 2.

Table 1.	Oxidation	of	l-alkynyl	ethers ⁵	with	PhIO/RuCl ₂ (PPh ₃) ₃ ^a
----------	-----------	----	-----------	---------------------	------	--

Substrate	R	R'	Isolated yield b	Remark ⁸	
<u>1</u> H		C ₂ H ₅	-	decomposition	
2	CH ₃	C_2H_5	67% ^C		
<u>3</u>	iso-C₃H₁	CH3	60%	64% with RuO ₄ 10	
<u>4</u>	n-C ₆ H ₁₃	CH3	59%		
<u>5</u>	n-C4H9	iso-C₃H₁	60%		
<u>6</u>	<u>6</u> C ₆ H ₅ C ₂ H ₅		70%	l mmol scale (30 min)	

 $\overline{a}_{\text{Conditions: 10 mmol}}$ of substrate, 2.6 equiv. of PhIO, 1% catalyst, 15 min at RT. b_{Dy} chromatography on SiO_2 with pentane (PhI) followed by CH_2Cl_2 . a_{Dy} distillation.

Table 2. Oxidation of 1-alkynyl amines 11 with PhIO/RuCl $_2$ (PPh $_3$) $_3$

Substrate	R	R'	Isolated yield	Remark ⁸	
<u>7</u>	<u>7</u> CH ₃		-	decomposition	
8	<i>iso</i> -C₃H ₇	CH3	44%	5 mmol scale	
<u>9</u>	C_6H_5	CH ₃	84%	71% with RuO ₄ 10	
<u>10</u>	C_6H_5	C_2H_5	76%		

aSame conditions as above, but 1.5 h reaction time.

In a typical experiment 96 mg of catalyst $(RuCl_2(PPh_3)_3)$ in 25 ml of CH_2Cl_2 were added to PhIO (5.72 g, 26 mmol) suspended in 50 ml of CH_2Cl_2 . Dimethyl(phenylethynyl)amine (1.45 g, 10 mmol) in 25 ml of CH_2Cl_2 was added at once. An exothermic reaction started immediately. After 1.5 h stirring excess PhIO was filtered, the solvent evaporated and the product was purified by column chromatography. Iodobenzene was eluted with CH_2Cl_2 , the product, N,N-dimethyl-2-oxo-benzylamide (1.49 g, 84%) with ether.

No reaction occurs without catalyst; for example, $\underline{2}$ was recovered unchanged after exposure to 3 eq. of PhIO during 3 h. The α -keto esters and amides, once formed, are stable towards PhIO/RuCl₂(PPh₃)₃: ethyl pyruvate was not degraded under the reaction conditions during 12 h. Oxidation proceeds also with other Ru-catalysts such as Ru₃(CO)₁₂, RuCl₂(CO)₂(PPh₃)₂, ruthenocene in CH₂Cl₂ and RuCl₃ aq. (in acetone). The recently published variation of the catalytic RuO₄ procedure¹⁰ was applied to $\underline{3}$ and $\underline{9}$ and gave comparable results as PhIO. However, with respect to other substrates, our system differs significantly from RuO₄. It is inert towards alkenes, simple arenes and ethers, but reacts with sulfides to yield sulfoxides and sulfones.¹⁴

With respect to this latter reaction, it is comparable to PhIO/TPPFe(III)Cl id or PhIO $_2$ combined with Lewis acid catalysts. 3b

To our knowledge the literature concerning oxidation of 1-alkynyl ethers and amines is very limited. α -Keto esters have been isolated in good yield from ozonolysis 15 or oxidation with $0s0_4/\text{KC}10_3^{16}$ of 1-alkynyl ethers and by ozonolysis of bromoacetylenes. 17 Only one observation dealing with conversion of an 1-alkynyl amine to a α -keto amide by means of singlet oxygen has been reported. 18 The present procedure is simple and convenient. The only limitation encountered so far occurred with ethoxyacetylene ($\underline{1}$) and N, N-diethylpropinylamine ($\underline{7}$) which underwent decomposition rather than oxidation under the reaction conditions.

The synthesis of α -ketoesters and -amides is of interest for asymmetric synthesis of α -amino acids¹⁹ and for design of certain enzyme inhibitors.²⁰ In view of its simplicity our approach should be competitive to procedures described in the literature.²¹

Acknowledgment. This work was supported by the $Swiss\ National\ Science\ Foundation$ (grant No 2.420-0.79).

REFERENCES AND NOTES

- (a) J.T. Groves & W.J. Kruper, Jr., J. Am. Chem. Soc. 101, 7613 (1979); (b) J.T. Groves, W.J. Kruper, Jr., & R.C. Haushalter, *ibid*. 102, 6375 (1980); (c) J.T. Groves, R.C. Haushalter, M. Nakamura, T.E. Nemo & B.J. Evans, *ibid*. 103, 2884 (1981); (d) W. Ando, R. Tajima & T. Takata, Tetrahedron Letters 23, 1685 (1982).
- (a) P. Müller & J. Godoy, Tetrahedron Letters <u>22</u>, 2361 (1981); (b) R.M. Moriarty, S.C. Gupta, H. Hu, D.R. Berenschot & K.B. White, J. Am. Chem. Soc. <u>103</u>, 686 (1981); R.M. Moriarty, H. Hu & S.C. Gupta, Tetrahedron Letters <u>22</u>, 1283 (1981).
- 3) (a) D.H.R. Barton, J.W. Morzycki & W.B. Motherwell, J. Chem. Soc., Chem. Commun. 1981, 1044; (b) D.H.R. Barton, C.R.A. Godfrey, J.W. Morzycki, W.B. Motherwell & A. Stobie, Tetrahedron Letters 23, 957 (1982).
- 4) P. Müller & J. Godoy, Helv. Chim. Acta 64, 2531 (1981).
- The alkynyl ethers $\underline{1}$ and $\underline{2}$ were obtained from ethylvinyl and ethyl-1-propenyl ether using the procedure of Arens, while $\underline{3}$, $\underline{4}$ and $\underline{5}$ (b.p. $57^{\circ}/12$ Torr) were accessible from the corresponding 1-alkoxy-1-chloroalkanes via bromination-dehydrobromination and $\underline{6}$ from 1-ethoxy-2-iodoacetylene via coupling with a phenylcopper(I) reagent.
- J.F. Arens, Rec. Trav. Chim. Pays-Bas 74, 271 (1955).
- 7) J.R. Nooi & J.F. Arens, Rec. Trav. Chim. Pays-Bas <u>78</u>, 284 (1959).
- 8) All products reported exhibited satisfactory IR, ¹H-NMR and mass spectral data.
- 9) W. Verboom, H. Westmijze, H.J.T. Bos & P. Vermeer, Tetrahedron Letters 1978, 1441.

- 10) H.J. Carlsen, T. Katsuki, V.S. Martin & K.B. Sharpless, J. Org. Chem. 46, 3936 (1981).
- 11) Ynamine $\underline{7}$ was purchased from Fluka. $\underline{8}$ (b.p. $52^{\circ}/60$ Torr) was synthesized from ether $\underline{3}^{12}$ while 9 and 10 were prepared from 1-chloro-2-phenylacetylene. 13
- 12) P.P. Montijn, E. Harryvan & L. Brandsma, Rec. Trav. Chim. Pays-Bas 83, 1211 (1964).
- 13) H.G. Viehe & M. Reinstein, Angew. Chem. Int. Ed. 3, 506 (1964); Chemistry of Acetylenes, H.G. Viehe, Ed., Marcel Dekker, New York, N.Y., 1969, Chap. 12.
- 14) P. Müller & J. Godoy, unpublished results.
- 15) W.W. Wisaksono & J.F. Arens, Rec. Trav. Chim. Pays-Bas 80, 846 (1961).
- 16) L. Bassignani, A. Brandt, V. Caciagli & L. Re, J. Org. Chem. 43 4245 (1978).
- 17) S. Cacchi, L. Caglioti & P. Zappelli, J. Org. Chem. <u>38</u>, 3653 (1973).
- 18) C.S. Foote & J.W.-P. Lin, Tetrahedron Letters 1968, 3267.
- E.J. Corey, R.J. McCaully & H.S. Sachdev, J. Am. Chem. Soc. <u>92</u>, 2476 (1970); E.J. Corey,
 H.S. Sachdev, J.Z. Gougoutas & W. Saenger, *ibid*. <u>92</u>, 2488 (1970); B.W. Bycroft & G.R. Lee,
 J. Chem. Soc., Chem. Commun. 1975, 988.
- 20) A.A. Patchett, E. Harris, E.W. Tristram, M.J. Wyvratt et αl ., Nature 288, 280 (1980).
- 21) E.L. Eliel & A.A. Hartmann, J. Org. Chem. 37, 505 (1972); L.M. Weinstock, R.B. Currie & A.V. Lovell, Synth. Commun. 11, 943 (1981); J.P. Schaefer & E.J. Corey, J. Org. Chem. 24, 1825 (1959); P. Cou ot & C. Legris, Synthesis 1975, 118; G.P. Axiotis, Tetrahedron Letters 22, 1509 (1981); E.D. Thorsett, ibid. 23, 1875 (1982); K. Ogura, N. Katoh, I. Yoshimura & G. Tsuchihashi, ibid. 1978, 375; G.A. Russell & G.J. Mikol, J. Am. Chem. Soc. 88, 5498 (1966); P.A. Manis & M.W. Rathke, J. Org. Chem. 45, 4952 (1980); E. Zbiral & E. Werner, Tetrahedron Letters 1966, 2001.

(Received in Germany 2 June 1982)